Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38587806

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways, it is characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 expression has a detrimental role in numerous disorders. However, its role in COPD remains understudied. This study aims to elucidate the role and underlying mechanism of DACH1 in airway inflammation of COPD. DACH1 expression was measured in lung tissues of patients with COPD. Airway epithelium-specific DACH1 knockdown mice and AAV-transfected DACH1 overexpressed mice were used to investigate its role and potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by cigarette smoke extract simulation (CSE) in vitro. Compared to non-smokers and smokers without COPD, COPD patients had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated mice airway inflammation and lung function decline caused by CS, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion in 16 HBE cells after CSE simulation, respectively. Nuclear factor erythroid 2-related factor 2 (NRF2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking COPD patients when compared to nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.

2.
BMC Infect Dis ; 24(1): 342, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515075

RESUMO

Scedosporium apiospermum species complex are widely distributed fungi that can be found in a variety of polluted environments, including soil, sewage, and decaying vegetation. Those opportunistic pathogens with strong potential of invasion commonly affect immunosuppressed populations However, few cases of scedosporiosis are reported in immunocompetent individuals, who might be misdiagnosed, leading to a high mortality rate. Here, we reported an immunocompetent case of systemtic infection involved in lung, brain and spine, caused by S. apiospermum species complex (S. apiospermum and S. boydii). The patient was an elderly male with persistent fever and systemtic infection after near-drowning. In the two tertiary hospitals he visited, definite diagnosis was extremely difficult. After being admitted to our hospital, he was misdiagnosed as tuberculosis infection, before diagnosis of S. apiospermum species complex infection by the metagenomic next-generation sequencing. His symptoms were alleviated after voriconazole treatment. In the present case, the details associated with its course were reported and published studies on Scedosporium spp. infection were also reviewed, for a better understanding of this disease and reducing the misdiagnosis rate.


Assuntos
Infecções Fúngicas Invasivas , Afogamento Iminente , Scedosporium , Humanos , Masculino , Idoso , Antifúngicos/uso terapêutico , Voriconazol/uso terapêutico , Pulmão/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
3.
J Adv Res ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342401

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES: To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS: Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS: GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION: Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.

4.
Respir Res ; 25(1): 50, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254098

RESUMO

BACKGROUND: Several researches have demonstrated that patients with sarcoidosis accompanied with the abnormality in blood glucose and/or lipids, however, the causal relationship between them remains uncertain. To elucidate the potential association and causality of blood glucose and lipids with sarcoidosis, we conducted a propensity score matching (PSM)-based observational study combined with mendelian randomization (MR) analysis. METHODS: All subjects in this study were retrospectively collected from Tongji Hospital during 2010 and 2023. 1:1 PSM was employed to control the potential confounders as appropriate. Univariable and multivariable logistic regression analyses were performed to estimate the associations of sarcoidosis with fasting glucose, high density lipoprotein cholesterol (HDLC), low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and total triglyceride (TG). The further subtype analysis was also conducted. Afterwards, a bidirectional MR analysis based on public data deeply explored the causality among the 5 candidate traits and sarcoidosis, for which the inverse-variance weighted (IVW) method was utilized as the main inferring approach. RESULTS: In the observational study, a total number of 756 subjects were enrolled, with 162 sarcoidosis patients and 594 non-sarcoidosis participants, while 160 pairs of subjects were matched after PSM. Multivariable logistic regression analysis indicated that HDLC (OR: 0.151; 95% CI: 0.056-0.408; P < 0.001) and TC (OR: 3.942; 95% CI: 2.644-5.877; P < 0.001) were strongly associated with sarcoidosis. Subtype analysis showed that low HDLC was independently correlated to risk of lesions in bronchus and lungs, and mediastinal lymph nodes, while high TC was to cervical lymph nodes. In MR analysis, high fasting glucose, low HDLC, and high TC were identified as the causal factors of sarcoidosis. CONCLUSION: HDLC and TC had the potential to influence the risk of sarcoidosis, which could be regarded as predictors and may provide new diagnostic and therapeutic targets for sarcoidosis.


Assuntos
Glicemia , Sarcoidose , Humanos , Análise da Randomização Mendeliana , Estudos Retrospectivos , Glucose , Sarcoidose/diagnóstico , Sarcoidose/epidemiologia , Sarcoidose/genética , Lipídeos
5.
J Med Virol ; 95(12): e29270, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047459

RESUMO

Coronavirus disease 2019 (COVID-19) pathogenesis is influenced by reactive oxygen species (ROS). Nevertheless, the precise mechanisms implicated remain poorly understood. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main driver for this condition, is a structural protein indispensable for viral replication and assembly, and its role in ROS production has not been reported. This study shows that SARS-CoV-2 N protein expression enhances mitochondrial ROS level. Bulk RNA-sequencing suggests of aberrant redox state of the electron transport chain. Accordingly, this protein hinders ATP production but simultaneously augments the activity of complexes I and III, and most mitochondrially encoded complex I and III proteins are upregulated by it. Mechanistically, N protein of SARS-CoV-2 shows significant mitochondrial localization. It interacts with mitochondrial transcription components and stabilizes them. Moreover, it also impairs the activity of antioxidant enzymes with or without detectable interaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Espécies Reativas de Oxigênio , Proteínas do Nucleocapsídeo/química , Replicação Viral
6.
Respiration ; 102(12): 995-1002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048758

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is highly prevalent and underdiagnosed worldwide. The validity and reliability of COPD Population Screening (COPD-PS) questionnaire are not properly known in a large-sample Chinese population. METHODS: This is a national multicenter prospective study that enrolled 1,824 outpatients from 12 hospital sites in China. Scores of the Chinese version of COPD-PS questionnaire, demographic data, and clinical information were collected. The validity and the test-retest reliability were evaluated. RESULTS: 1,824 participants were involved in this study, and 404 (22.1%) were diagnosed with COPD. The overall area under the curve (AUC) of the receiver operating characteristic (ROC) for COPD-PS questionnaire was 0.761 (95% CI: 0.734-0.787). A cut-off point of 4 was recommended, corresponding to a sensitivity of 74.50% and a specificity of 64.37%. The COPD-PS questionnaire showed an overall Pearson's correlation of 0.88. CONCLUSIONS: The COPD-PS questionnaire can be used in screening COPD patients from the general Chinese population with respiratory symptoms.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Reprodutibilidade dos Testes , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Programas de Rastreamento , Inquéritos e Questionários
8.
Inflammation ; 46(6): 2120-2131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37561311

RESUMO

The effectiveness of corticosteroids (GCs) varies greatly in interstitial lung diseases (ILDs). In this study, we aimed to compare the gene expression profiles of patients with cryptogenic organizing pneumonia (COP), idiopathic pulmonary fibrosis (IPF), and non-specific interstitial pneumonia (NSIP) and identify the molecules and pathways responsible for GCs sensitivity in ILDs. Three datasets (GSE21411, GSE47460, and GSE32537) were selected. Differentially expressed genes (DEGs) among COP, IPF, NSIP, and healthy control (CTRL) groups were identified. Functional enrichment analysis and protein-protein interaction network analysis were performed to examine the potential functions of DEGs. There were 128 DEGs when COP versus CTRL, 257 DEGs when IPF versus CTRL, 205 DEGs when NSIP versus CTRL, and 270 DEGs when COP versus IPF. The DEGs in different ILDs groups were mainly enriched in the inflammatory response. Further pathway analysis showed that "interleukin (IL)-17 signaling pathway" (hsa04657) and "tumor necrosis factor (TNF) signaling pathway" were associated with different types of ILDs. A total of 10 genes associated with inflammatory response were identified as hub genes and their expression levels in the IPF group were higher than those in the COP group. Finally, we identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4). Our bioinformatics analysis demonstrated that the inflammatory response played a pathogenic role in the progression of ILDs. We also illustrated that the inflammatory reaction was more severe in the IPF group compared to the COP group and identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4) in ILDs.


Assuntos
Pneumonias Intersticiais Idiopáticas , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Pneumonias Intersticiais Idiopáticas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Esteroides/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo
9.
Int J Biol Sci ; 19(5): 1597-1615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056936

RESUMO

Patients with eosinophilic asthma react well to conventional treatment of asthma while individualized therapy for non-eosinophilic endotypes have yet to be developed. Dysregulated sphingosine metabolites are associated with the pathophysiology of different asthma endotypes with their receptors involved. However, whether the sphingosine-1-phosphate receptor 4 (S1PR4) contributes to disease progression of asthma remains underappreciated. In this study, we demonstrated that sphingosine metabolism was disturbed in asthma while it could not be used to distinguish between different endotypes of asthma. S1PR4, a vital receptor of bioactive sphingosine metabolites and mainly expressed in macrophages, exhibited lower expression both in patients and experimental mice with neutrophilic airway inflammation. Additionally, S1pr4 deficiency aggravated the OVA/LPS-induced pulmonary inflammation in mice along with a significant up-regulation in M1 macrophage activation. Mechanistic studies showed that S1PR4 was strongly connected to bioactive oxylipins concurrent with bounding to formyl peptide receptor 2 to influence the phosphorylation of JNK and contributed to the macrophage M1 program, which in turn secreted amounts of inflammatory cytokines associated to the inflammatory response of neutrophilic asthma. Furthermore, treating mice with S1PR4 agonist CYM50308 was characterized by less pulmonary inflammatory infiltration. Our research indicates S1PR4 a promising therapeutic target for non-eosinophilic phenotypes of asthma.


Assuntos
Asma , Esfingosina , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/uso terapêutico , Esfingosina/metabolismo , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Ativação de Macrófagos , Asma/metabolismo , Inflamação , Modelos Animais de Doenças
10.
Transl Res ; 257: 54-65, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754276

RESUMO

Dysregulation of type II alveolar epithelial cells (AECII) plays a vital role in the initiation and development of pulmonary fibrosis (PF). Dachshund homolog 1 (Dach1), frequently expressed in epithelial cells with stem cell potential, controls cell proliferation, apoptosis, and cell cycle in tissue development and disease process. In this study, we demonstrated that the lungs collected from PF patients and mice of Bleomycin (BLM)-treated were characterized by low expression of Dachshund homolog 1 (Dach1), especially in AECII. Dach1 deficiency in the alveolar epithelium exacerbated PF in BLM-treated mice, as evidenced by reduced pulmonary function and increased expression of fibrosis markers. Rather, treatment with lung-specific overexpression of Dach1 alleviated histopathological damage, lung compliance, and fibrosis in BLM-treated mice. Moreover, overexpression of Dach1 could inhibit epithelial apoptosis in vitro. Conversely, primary AECII with Dach1 depletion were more susceptible to apoptosis in vivo. Mechanically, Dach1 combined with C-Jun protooncogene selectively bound to the promoter of B-cell lymphoma 2 interacting mediators of cell death (Bim), by which it repressed Bim expression and alleviated epithelial apoptosis. Taken together, our data support that Dach1 in AECII contributes to the progression of PF and may be a viable target for the prevention and treatment of PF.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Apoptose , Bleomicina/toxicidade , Bleomicina/metabolismo , Epitélio/patologia , Proteínas do Olho/genética , Pulmão/patologia , Fibrose Pulmonar/metabolismo
11.
J Asthma ; 60(1): 203-211, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168451

RESUMO

Club cell 10-kDa protein (CC10) is a documented biomarker for airway obstructive diseases. Primarily produced by nonciliated club cells in the distal airway and in nasal epithelial cells, CC10 suppresses Th2 cell differentiation and Th2 cytokine production. In this study, we aimed to determine whether CC10 can also be used as an alternative biomarker for identifying Type 2 (T2) asthma.74 patients with asthma, and 24 healthy controls were enrolled in the study. T2-high asthma was defined as elevation in two or more biomarkers, such as sputum eosinophilia ≥ 3%, high blood eosinophils ≥ 300/µL, or high FeNO ≥ 30 ppb. T2-low asthma was defined as no elevation in biomarkers. Enzyme-linked immunosorbent assay (ELISA) was used to assess the CC10 levels in plasma.The plasma CC10 level in patients with T2-high asthma was lower than that of patients with T2-low asthma and healthy controls (P < 0.05). To distinguish between T2-high and T2-low phenotype in patients with asthma, a receiver-operating characteristic (ROC) analysis was performed. It showed a sensitivity of 58.1% and specificity of 78.0% when using 22.74 ng/ml of plasma CC10. Correlation analysis indicated that the plasma CC10 level was inversely correlated with sputum eosinophil, blood eosinophil, and FeNO, and positively correlated with log PD20. However, no correlation with sputum neutrophil percentages, macrophage percentages, IgE, or lung function was found.Plasma CC10 is potentially useful in predicting T2-high and T2-low asthma. Lower plasma CC10 was associated with enhanced airway hyperresponsiveness, and Type 2 inflammation.


Assuntos
Asma , Eosinofilia , Humanos , Eosinófilos/metabolismo , Fenótipo , Neutrófilos , Biomarcadores , Escarro , Óxido Nítrico/metabolismo
12.
J Fish Biol ; 102(2): 504-515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36437626

RESUMO

Growth rate is a commercial trait in aquaculture that is influenced by multiple factors, among which genetic composition plays a fundamental role in the growth rate of species. The phoenix barb (Spinibarbus denticulatus denticulatus) is a widely distributed freshwater fish species in South China. Although S. d. denticulatus is reared in South China, the molecular mechanisms underlying the growth rate of the species remain unclear. Here, the authors performed transcriptome analysis of muscle tissues from fast-growing (FG) and slow-growing (SG) S. d. denticulatus at 90, 150, and 300 days after hatch (DAH) to elucidate its growth mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed genes (DEGs) between the two groups were enriched in pathways related to muscle growth, glycolysis, and energy and lipid metabolism. Nonetheless, a higher number of DEGs were identified in the FG vs. SG groups at 90 and 300 DAH compared with 150 DAH. DEGs identified at 90 DAH were mainly enriched in the GH/IGF axis, PI3K-Akt signalling pathway, AMPK signalling pathway and lipid metabolism highly expressed in FG individuals. DEGs identified at 300 DAH were mainly enriched in PI3K-Akt signalling pathway, glycolysis/gluconeogenesis, gene translation and lipid metabolism. In addition, some genes were expressed during the early growth stage in FG individuals but expressed during the late stage in SG individuals, indicating considerable variations in the expression profiles of growth-related genes at different developmental stages. Overall, these findings contribute to the understanding of the growth mechanism of S. d. denticulatus, which would be useful for the propagation of fast-growing breeds.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Perfilação da Expressão Gênica , Músculos , Genoma , Transcriptoma
13.
Oxid Med Cell Longev ; 2022: 7067623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578523

RESUMO

Chronic obstructive pulmonary disease (COPD), a small airway disease, is regarded as a metabolic disorder. To further uncover the metabolic profile of COPD patients, it is necessary to identify metabolism-related differential genes in small airway epithelium (SAE) of COPD. Metabolism-related differential genes in SAE between COPD patients and nonsmokers were screened from GSE128708 and GSE20257 datasets. KEGG, GO, and PPI analyses were performed to evaluate the pathway enrichment, term enrichment, and protein interaction of candidate metabolism-related differential genes, respectively. RT-PCR was used to verify the mRNA expression of the top ten differential genes. Western blotting was used to evaluate the protein expression of TXNRD1. TXNRD1 inhibitor auranofin (AUR) was used to assess the impact of TXNRD1 on oxidative stress and inflammation induced by cigarette smoke extraction (CSE). Twenty-four metabolism-related differential genes were selected. ALDH3A1, AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 in the top ten genes were significantly upregulated after CSE simulation for 24 h in human bronchial epithelial (16HBE) cells. Among them, CYP1A1 and TXNRD1 also have a significant upregulation in primary SAE after simulation of CSE for 24 h. The overexpression of protein TXNRD1 has also been detected in 16HBE cells, primary SAE stimulated with CSE, and mouse lung exposed to cigarette smoke (CS). Additionally, inhibition of TXNRD1 with 0.1 µM AUR alleviated the expression of IL-6 and reactive oxygen species (ROS) induced by CSE by activating the Nrf2/HO-1 pathway in 16HBE cells. This study identified twenty-four metabolism-related differential genes associated with COPD. TXNRD1 might participate in the oxidative stress and inflammation induced by CS by regulating the activation of the Nrf2/HO-1 pathway.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fumar Cigarros/efeitos adversos , Citocromo P-450 CYP1A1/metabolismo , Linhagem Celular , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/genética , Inflamação/metabolismo , Estresse Oxidativo/genética , Epitélio/metabolismo , Células Epiteliais/metabolismo , Tiorredoxina Redutase 1/metabolismo
14.
Aging (Albany NY) ; 14(20): 8568-8580, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36309899

RESUMO

Aging plays an essential role in the development for chronic obstructive pulmonary disease (COPD). The aim of this study was to identify and validate the potential aging-related genes of COPD through bioinformatics analysis and experimental validation. Firstly, we compared the gene expression profiles of aged and young COPD patients using two datasets (GSE76925 and GSE47460) from Gene Expression Omnibus (GEO), and identified 244 aging-related different expressed genes (DEGs), with 132 up-regulated and 112 down-regulated. Then, by analyzing the data for cigarette smoke-induced COPD mouse model (GSE125521), a total of 783 DEGs were identified between aged and young COPD mice, with 402 genes increased and 381 genes decreased. Additionally, functional enrichment analysis revealed that these DEGs were actively involved in COPD-related biological processes and function pathways. Meanwhile, six genes were identified as the core aging-related genes in COPD after combining the human DEGs and mouse DEGs. Eventually, five out of six core genes were validated to be up-regulated in the lung tissues collected from aged COPD patients than young COPD patients, namely NKG7, CKLF, LRP4, GDPD3 and CXCL9. Thereinto, the expressions of NKG7 and CKLF were negatively associated with lung function. These results may expand the understanding for aging in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Idoso , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo , Biologia Computacional , Transcriptoma , Envelhecimento/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/genética
15.
Front Oncol ; 12: 879793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785161

RESUMO

Pulmonary hypertension (PH) is a chronic vascular proliferative disorder. While cigarette smoke (CS) plays a vital part in PH related to chronic obstructive pulmonary disease (COPD). Methyl-CpG-Binding Domain Protein 2 (MBD2) has been linked to multiple proliferative diseases. However, the specific mechanisms of MBD2 in CS-induced PH remain to be elucidated. Herein, the differential expression of MBD2 was tested between the controls and the PH patients' pulmonary arteries, CS-exposed rat models' pulmonary arteries, and primary human pulmonary artery smooth muscle cells (HPASMCs) following cigarette smoke extract (CSE) stimulation. As a result, PH patients and CS-induced rats and HPASMCs showed an increase in MBD2 protein expression compared with the controls. Then, MBD2 silencing was used to investigate the function of MBD2 on CSE-induced HPASMCs' proliferation, migration, and cell cycle progression. As a consequence, CSE could induce HPASMCs' increased proliferation and migration, and cell cycle transition, which were suppressed by MBD2 interference. Furthermore, RNA-seq, ChIP-qPCR, and MassARRAY were conducted to find out the downstream mechanisms of MBD2 for CS-induced pulmonary vascular remodeling. Subsequently, RNA-seq revealed MBD2 might affect the transcription of BMP2 gene, which furtherly altered the expression of BMP2 protein. ChIP-qPCR demonstrated MBD2 could bind BMP2's promotor. MassARRAY indicated that MBD2 itself could not directly affect DNA methylation. In sum, our results indicate that increased MBD2 expression promotes CS-induced pulmonary vascular remodeling. The fundamental mechanisms may be that MBD2 can bind BMP2's promoter and downregulate its expression. Thus, MBD2 may promote the occurrence of the CS-induced PH.

16.
Respir Res ; 23(1): 120, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550579

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by chronic inflammation and airway remodeling. Human epididymis protein 4 (HE4) plays a critical role in various inflammatory or fibrotic diseases. However, the role of HE4 in COPD remains unidentified. METHODS: HE4 expression was determined in the lung tissues from COPD patients and cigarette smoke (CS)-exposed mice using immunohistochemical staining, qPCR, or western blot. The plasma level of HE4 was detected by ELISA. The regulations of HE4 in the expressions of CS extract (CSE)-induced inflammatory cytokines in human bronchial epithelial cells (HBE) were investigated through knockdown or overexpression of HE4. The role of secretory HE4 (sHE4) in the differentiation and proliferation in human pulmonary fibroblast cells (HPF) was explored via qPCR, western blot, CCK8 assay or 5-ethynyl-2'-deoxyuridine (EdU) staining. The probe of related mechanism in CSE-induced HE4 increase in HBE was conducted by administrating N-acetylcysteine (NAC). RESULTS: HE4 was up-regulated in both the lung tissue and plasma of COPD patients relative to controls, and the plasma HE4 was negatively associated with lung function in COPD patients. The same enhanced HE4 expression was verified in CS-exposed mice and CSE-induced HBE, but CSE failed to increase HE4 expression in HPF. In vitro experiments showed that reducing HE4 expression in HBE alleviated CSE-induced IL-6 release while overexpressing HE4 facilitated IL-6 expression, mechanistically through affecting phosphorylation of NFκB-p65, whereas intervening HE4 expression had no distinctive influence on IL-8 secretion. Furthermore, we confirmed that sHE4 promoted fibroblast-myofibroblast transition, as indicated by promoting the expression of fibronectin, collagen I and α-SMA via phosphorylation of Smad2. EdU staining and CCK-8 assay demonstrated the pro-proliferative role of sHE4 in HPF, which was further confirmed by enhanced expression of survivin and PCNA. Pretreatment of NAC in CSE or H2O2-induced HBE mitigated HE4 expression. CONCLUSIONS: Our study indicates that HE4 may participate in airway inflammation and remodeling of COPD. Cigarette smoke enhances HE4 expression and secretion in bronchial epithelium mediated by oxidative stress. Increased HE4 promotes IL-6 release in HBE via phosphorylation of NFκB-p65, and sHE4 promotes fibroblastic differentiation and proliferation.


Assuntos
Interleucina-6 , Doença Pulmonar Obstrutiva Crônica , Remodelação das Vias Aéreas , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
17.
Front Mol Biosci ; 9: 839259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309511

RESUMO

Background: At present, few studies have reported the metabolic profiles of lung tissue in patients with COPD. Our study attempted to analyze the lung metabolome in male COPD patients and to screen the overlapping biomarkers of the lung and plasma metabolomes. Methods: We performed untargeted metabolomic analysis of normal lung tissue from two independent sets (the discovery set: 20 male COPD patients and 20 controls and the replication set: 47 male COPD patients and 27 controls) and of plasma samples from 80 male subjects containing 40 COPD patients and 40 controls. Results: We found glycerophospholipids (GPs) and Amino acids were the primary classes of differential metabolites between male COPD patients and controls. The disorders of GPs metabolism and the valine, leucine and isoleucine biosynthesis metabolism pathways were identified in lung discovery set and then also validated in the lung replication set. Combining lung tissue and plasma metabolome, Phytosphingosine and l-tryptophan were two overlapping metabolites biomarkers. Binary logistic regression suggested that phytosphingosine together with l-tryptophan was closely associated with male COPD and showed strong diagnostic power with an AUC of 0.911 (95% CI: 0.8460-0.9765). Conclusion: Our study revealed the metabolic perturbations of lung tissues from male COPD patients. The detected disorders of GPs and amino acids may provide an insight into the pathological mechanism of COPD. Phytosphingosine and l-tryptophan were two novel metabolic biomarkers for differentiating COPD patients and controls.

19.
Oxid Med Cell Longev ; 2022: 9300269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035670

RESUMO

Extensive inflammation and apoptosis in structural cells of the lung are responsible for the progression and pathogenesis of chronic obstructive pulmonary disease (COPD). Myotubularin-related protein 14 (MTMR14) has been shown to participate in various biological processes, including apoptosis, inflammation, and autophagy. Nonetheless, the role of MTMR14 in COPD remains elusive. In the present study, we explored the expression of MTMR14 in human lung tissues and investigated the effects of overexpressed MTMR14 on in vitro and in vivo COPD models. Moreover, one of the possible mechanisms of MTMR14 alleviating COPD was explored based on mitochondrial function and mitophagy homeostasis. The results showed that MTMR14 expression was reduced in COPD patients' lungs in comparison to control subjects. MTMR14 overexpression inhibited cigarette smoke extract-induced inflammation and apoptosis and improved mitochondrial function and mitophagy in vitro. Further verification was carried out in COPD model mice. MTMR14 overexpression inhibited lung inflammation and reduced levels of IL-6 and KC in bronchoalveolar lavage fluid, as well as prevented emphysema and a decline in lung function. Furthermore, MTMR14 overexpression improved mitochondrial function and mitophagy to a certain extent. Collectively, our data support the hypothesis that MTMR14 participates in the pathogenesis of COPD. Improving mitochondrial function and mitophagy homeostasis may be one of the mechanisms by which MTMR14 alleviates COPD and may potentially be a novel therapeutic target for COPD.


Assuntos
Inflamação/metabolismo , Pneumopatias/terapia , Monoéster Fosfórico Hidrolases/metabolismo , Doença Pulmonar Obstrutiva Crônica/urina , Enfisema Pulmonar/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Humanos , Pneumopatias/genética , Pneumopatias/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia
20.
Front Med (Lausanne) ; 8: 744239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746180

RESUMO

Background: Aging is a strong risk factor and an independent prognostic factor in idiopathic pulmonary fibrosis (IPF). In this study, we aimed to conduct a comprehensive analysis based on gene expression profiles for the role of aging in pulmonary fibrosis. Method: Four datasets (GSE21411, GSE24206, GSE47460, and GSE101286) for patients with clinical IPF and one dataset for bleomycin (BLM)-induced pulmonary fibrosis (BIPF) mouse model (GSE123293) were obtained from Gene Expression Omnibus (GEO). According to different age ranges, both patients with IPF and BIPF mice were divided into young and aged groups. The differently expressed genes (DEGs) were systemically analyzed using Gene Ontology (GO) functional, Kyoto Encyclopedia of Genes and Genomes (KEGG), and hub genes analysis. Finally, we verified the role of age and core genes associated with age in vivo. Results: Via the expression profile comparisons of aged and young patients with IPF, we identified 108 aging-associated DEGs, with 21 upregulated and 87 downregulated. The DEGs were associated with "response to glucocorticoid," "response to corticosteroid," and "rhythmic process" in GO biological process (BP). For KEGG analysis, the top three significantly enriched KEGG pathways of the DEGs included "IL-17 signaling pathway," "Mineral absorption," and "HIF-1-signaling pathway." Through the comparisons of aged and young BIPF mice, a total number of 778 aging-associated DEGs were identified, with 453 genes increased and 325 genes decreased. For GO and KEGG analysis, the DEGs were enriched in extracellular matrix (ECM) and collagen metabolism. The common DEGs of patients with IPF and BIPF mice were enriched in the BP category, including "induction of bacterial agglutination," "hyaluronan biosynthetic process," and "positive regulation of heterotypic cell-cell adhesion." We confirmed that aged BIPF mice developed more serious pulmonary fibrosis. Finally, the four aging-associated core genes (Slc2a3, Fga, Hp, and Thbs1) were verified in vivo. Conclusion: This study provides new insights into the impact of aging on pulmonary fibrosis. We also identified four aging-associated core genes (Slc2a3, Fga, Hp, and Thbs1) related to the development of pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...